Validation of the Kidney Disease Quality of Life Short Form 36 (KDQOL-36™) US Spanish and English Versions in a Cohort of Hispanics with Chronic Kidney Disease

Objective: Evaluate the reliability and validity of the Kidney Disease Quality of Life Short Form 36 (KDQOL-36™) in Hispanics with mild-to-moderate chronic kidney disease (CKD).

Design: Cross-sectional

Setting: Chronic Renal Insufficiency Cohort Study

Participants: 420 Hispanic (150 English- and 270 Spanish-speakers), and 409 non-Hispanic White individuals, matched by age (mean 57 years), sex (60% male), kidney function (mean estimated glomerular filtration rate 36ml/min/1.73m²), and diabetes (70%).

Methods: To measure construct validity, we selected instruments, comorbidities, and laboratory tests related to at least one KDQOL-36™ subscale. Reliability was determined by calculating Cronbach’s alpha.

Results: Reliability of each KDQOL-36™ subscale (SF-12 Physical Component Summary (PCS) and Mental Component Summary (MCS), Symptoms/Problems, Burden of Kidney Disease and Effects of Kidney Disease) was very good (Cronbach’s alpha >0.8). Construct validity was supported by expected negative correlation between MCS scores and the Beck Depression Inventory in all three subgroups \((r = -0.56 \text{ to } -0.61, P<.0001)\). There was inverse correlation between the Symptoms/Problems subscale and the Patient Symptom Form \((r = -0.70 \text{ to } -0.77, P<.0001)\). We also found significant, positive correlation between the PCS score and a physical activity survey \((r = +0.29 \text{ to } +0.38, P<.003)\); and between the PCS and MCS scores and the Kansas City Questionnaire \((r = +0.31 \text{ to } +0.64, P<.0001)\). Reliability and validity were similar across all racial/ethnic groups analyzed separately.

Conclusion: Our findings support the use of the KDQOL-36™ as a measure of HRQOL in this cohort of US Hispanics with CKD. (Ethn Dis. 2013;23(2):202-209)

Key Words: Validation, Quality of Life, Hispanics

INTRODUCTION

Hispanics, the largest minority group in the United States, are more likely to progress to end-stage renal disease (ESRD) than non-Hispanic Whites, and experience a substantial psychosocial burden resulting from comorbidities (eg, diabetes), and the difficulties of living with a chronic disease. Despite the magnitude of this problem, there are no validated measures to assess health-related quality of life (HRQOL) for Hispanics with mild-to-moderate chronic kidney disease (CKD).

HRQOL has been increasingly recognized as an important medical outcome in patients with CKD. A commonly used measure is the Kidney Disease Quality of Life (KDQOL™), which is a 134-item instrument designed to assess generic and kidney-disease targeted aspects of quality of life for individuals on dialysis. An abbreviated version of the KDQOL™, KDQOL-36™, has been translated to Spanish and used in the United States; however, it has not been adequately validated. In addition, the English version of the KDQOL-36™ has not been validated in the US Hispanic population. We studied the validity and reliability of the US Spanish and English versions of the KDQOL-36™ among Hispanic individuals with CKD enrolled in the Chronic Renal Insufficiency Cohort (CRIC) Study and the Hispanic CRIC (HCRIC) Study.

METHODOLOGY

Study Design and Participants

We conducted a cross-sectional study of 150 English- and 270 Spanish-speaking Hispanic, and 409 non-Hispanic White adult participants in the CRIC and HCRIC Studies, frequency-matched by age, sex, kidney function, and diabetes mellitus. The design, methods and characteristics of the CRIC and HCRIC Study participants have been previously reported.

In brief, the CRIC Study is a prospective cohort of 3612 individuals aged 21 to 74 years with mild-to-moderate CKD according to age-based estimated glomerular filtration rate (eGFR) inclusion criteria, recruited from seven clinical centers across the United States from May 2003 to March 2007. HCRIC is a parallel study to the CRIC Study that recruited 327 Hispanic individuals...
We studied the validity and reliability of the US Spanish and English versions of the KDQOL-36™ among Hispanic individuals with CKD enrolled in the Chronic Renal Insufficiency Cohort (CRIC) Study and the Hispanic CRIC (HCRIC) Study.

individuals from the Chicago area between October 2005 and June 2008. Among Hispanic participants, 69% were Mexican American, 16% were Puerto Rican, and 15% had other Latin American ancestry. Protocols for both studies were approved by the Institutional Review Board of each participating Institution and are in accordance with the principles of the Declaration of Helsinki. All participants provided informed consent.

Variables and Measurements
Sociodemographic characteristics, medical history and medications were self-reported at the baseline study visit. Blood pressure (BP) and anthropometric measurements were obtained using standard methods. The CRIC Study definitions of hypertension, diabetes mellitus and history of cardiovascular disease (CVD) have been published elsewhere.9 Glomerular filtration rate was estimated using the four-variable Modification of Diet in Renal Disease (MDRD) equation.11
Participants self-administered the KDQOL-36™ in their language of preference (Spanish or English) at study entry. The KDQOL-36™ is a measure of kidney disease-related quality of life that comprises four subscales: Generic core [Physical Component Summary (PCS, 12 items) and Mental Component Summary (MCS, 12 items)]; Symptoms/Problems (12 items); Burden of Kidney Disease (4 items), and Effects of Kidney Disease (8 items).6,7 Scores of the different subscales were calculated according to the KDQOL-36™ scoring program.12,13 Raw, pre-coded numeric values for each item were transformed linearly to a 0 to 100 range, with higher scores reflecting better quality of life.13 Subsequently, the scores for the PCS and MCS were converted to T-scores with a mean of 50 and a standard deviation of 10. Most questions in the KDQOL-36™ are focused on the underlying health status during the preceding four weeks. Two items regarding problems with access to dialysis site were not answered because none of the participants were on dialysis at study entry. The KDQOL-36™ US Spanish version was adapted from an existing Spain Spanish version by FACITtrans (affiliate of the Functional Assessment of Chronic Illness Therapy (FACIT) Measurement System).7 This process involved: harmonization of the Spain Spanish version with the existing US Spanish RAND-36; review and suggested modifications by two native Spanish-speaking translators; reconciliation of suggestions by a Consensus Committee; back-translation of modifications into US English by one native English-speaker fluent in Spanish; comparison to the source US English version of the KDQOL-36™ and rating of equivalence by a KDQOL Working Group project coordinator (Benjamin Arnold, www.FACITtrans.org, personal communication).

Statistical Methods
Summary statistics for demographic and KDQOL-36™ subscales were calculated for all three subgroups (Spanish- and English-speaking Hispanics, and non-Hispanic Whites) as a whole and then separately. We used Chi-squared tests for dichotomous variables and analysis of variance (ANOVA) for continuous variables to test differences between groups. When the overall ANOVA was statistically significant (P<.05), it was followed by a Tukey’s multiple comparisons procedure to determine which pairwise comparisons were statistically significant. In addition, we conducted multiple adjusted comparisons on the least squares means of each KDQOL-36™ subscale score across the three groups. Spearman correlations were used to capture the strength of the monotonic relationship between variables without confining the shape of the relationship to be linear.

Reliability and Validity of the KDQOL-36™
Internal consistency reliability was estimated using Cronbach’s alpha for each subscale of the KDQOL-36™. A Cronbach’s alpha of >0.7 was considered high internal consistency. For analysis of construct validity we selected instruments, comorbidities, and laboratory tests that were expected to be correlated with at least one of the KDQOL-36™ subscales. The first measure of construct validity was the correlation between the overall health rating score (the first item of the KDQOL-36™) and each of the KDQOL-36™ subscales score. Second, we calculated the correlations between the generic core of the KDQOL-36™ and selected measures expected to be correlated with the PCS or MCS including the Beck Depression Inventory (BDI), a 21-item instrument to measure depression;14 the Multi-Ethnic Study of Atherosclerosis (MESA) Typical Week Physical Activity Survey (TWPAS), which measures how much physical activity of different intensities is undertaken by the study participant summarized as the metabolic equivalent (MET) score for all intentional exercise;15 and the Kansas City Cardiomyopathy Questionnaire (KCCQ), which focuses on HRQOL in patients with congestive heart failure.16 Third,
KDQOL-36 Validation in Hispanics with CKD - Ricardo et al

...evaluated and expected to be associated with lower HRQOL.

RESULTS

Demographic and clinical characteristics of study participants are summarized in Table 1. Compared with non-Hispanic Whites (W), Spanish-speaking Hispanics (SH) were more likely to have 6th grade education or less, lower hemoglobin, and less likely to have a self-reported history of CVD. Compared with non-Hispanic Whites, English-speaking Hispanics (EH) were more likely to be younger, have lower hemoglobin, and greater self-reported hypertension; and less likely to have a high school diploma.

Statistical Properties and Reliability of the KDQOL-36

The mean scores for each KDQOL-36 subscale ranged from 45.0 (MCS) to 83.0 (effects of kidney disease) among Spanish-Speaking Hispanics; from 37.8 (PCS) to 87.1 (effects of kidney disease) among English-Speaking Hispanics; and from 41.2 (PCS) to 88.8 (effects of kidney disease) among non-Hispanic whites (Table 2). The majority of the dimensions did not suffer from ceiling effects. However, burden of kidney disease and effects of kidney disease had high percentages of floor effects. Internal consistency reliability for all the subscales was very good with Cronbach’s alpha values ranging from 0.80 to 0.87 (Table 2). The largest pairwise difference in Cronbach’s alpha across ethnicity/language subgroups within any KDQOL-36 subscale was 0.03.

Construct Validity of the KDQOL-36

The overall health rating score correlated inversely with all of the KDQOL-36 subscales among all three subgroups (Tables 3). Of the generic domains, the strongest correlation with the overall health rating scale was seen

Table 1. Demographics and KDQOL-36 subscale scores overall and by participants’ group

<table>
<thead>
<tr>
<th>Variable</th>
<th>Total N=829</th>
<th>Spanish-Speaking Hispanics Group 1 n=270</th>
<th>English-Speaking Hispanics Group 2 n=150</th>
<th>Non-Hispanic Whites Group 3 n=409</th>
<th>P</th>
<th>Significant Pairwise Differences</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age, mean (SD)a</td>
<td></td>
<td>57.0 (11.6)</td>
<td>58.1 (10.6)</td>
<td>53.8 (12.8)</td>
<td>.9</td>
<td>Group 1 vs 2</td>
</tr>
<tr>
<td>Male, n (%)</td>
<td></td>
<td>497 (60%)</td>
<td>163 (60%)</td>
<td>90 (60%)</td>
<td>.001</td>
<td>Group 2 vs 3</td>
</tr>
<tr>
<td>Education n (%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>n/a</td>
</tr>
<tr>
<td>≤ 6th grade</td>
<td></td>
<td>183 (22.1%)</td>
<td>147 (54.4%)</td>
<td>35 (23.3%)</td>
<td>.04</td>
<td>Group 1 vs 2</td>
</tr>
<tr>
<td>7th-12th grade</td>
<td></td>
<td>121 (14.6%)</td>
<td>60 (22.2%)</td>
<td>40 (26.7%)</td>
<td>.001</td>
<td>Group 1 vs 2</td>
</tr>
<tr>
<td>>12th grade</td>
<td></td>
<td>525 (63.3%)</td>
<td>63 (23.3%)</td>
<td>75 (50.0%)</td>
<td>.001</td>
<td>Group 2 vs 3</td>
</tr>
<tr>
<td>Creatinine, mg/dl, mean (SD)</td>
<td></td>
<td>1.9 (0.56)</td>
<td>1.9 (0.64)</td>
<td>2.0 (0.59)</td>
<td>.01</td>
<td>Group 2 vs 3</td>
</tr>
<tr>
<td>eGFRc ml/min/1.73m2 mean (SD)</td>
<td></td>
<td>35.9 (11.0)</td>
<td>36.0 (11.7)</td>
<td>34.4 (11.1)</td>
<td>.02</td>
<td>n/a</td>
</tr>
<tr>
<td>Hemoglobin, g/dl, mean (SD)</td>
<td></td>
<td>12.3 (1.8)</td>
<td>11.8 (1.7)</td>
<td>12.0 (2.2)</td>
<td>.001</td>
<td>Group 1 vs 2</td>
</tr>
<tr>
<td>Serum albumin, g/dl, mean (SD)</td>
<td></td>
<td>3.8 (0.52)</td>
<td>3.7 (0.53)</td>
<td>3.6 (0.60)</td>
<td>.001</td>
<td>Group 2 vs 3</td>
</tr>
<tr>
<td>History of diabetes, n (%)</td>
<td></td>
<td>580 (70%)</td>
<td>186 (69%)</td>
<td>109 (73%)</td>
<td>.001</td>
<td>Group 1 vs 2</td>
</tr>
<tr>
<td>History of hypertension, n (%)</td>
<td></td>
<td>724 (87%)</td>
<td>242 (90%)</td>
<td>139 (93%)</td>
<td>.008</td>
<td>Group 2 vs 3</td>
</tr>
<tr>
<td>History of CVD, n (%)</td>
<td></td>
<td>264 (32%)</td>
<td>64 (24%)</td>
<td>51 (34%)</td>
<td>.002</td>
<td>Group 1 vs 3</td>
</tr>
<tr>
<td>Davies Comorbidity Score, mean (SD) (range 0 to 7)</td>
<td>1.25 (0.99)</td>
<td>1.13 (0.85)</td>
<td>1.29 (0.99)</td>
<td>1.31 (1.07)</td>
<td>.06</td>
<td>n/a</td>
</tr>
</tbody>
</table>

a SD, standard deviation.

b by Bonferroni adjustment, alpha level for statistical significance is 0.0167.

c eGFR, estimated glomerular filtration rate.

d CVD, cardiovascular disease.
Typical Week Physical Activity Survey.

Kansas City Cardiomyopathy Questionnaire.

Effects of kidney disease

Overall health rating score

Symptoms/problems

Burden of kidney disease

Non-Hispanic Whites, n=409

Burden of kidney disease

Symptoms/problems

Effects of kidney disease

Physical component summary

Non-Hispanic Whites, n=409

Burden of kidney disease

Symptoms/problems

Physical component summary

Mental component summary

The Patient Symptom Form score had a significant, negative correlation with the Symptoms/problems subscale (r = −0.71 [EH], −0.70 [SH], and −0.77 [W]).

Table 3. Spearman correlations between KDQOL-36 TM subscales and independent measures by participants’ group

<table>
<thead>
<tr>
<th>KDQOL-36 TM Subscale</th>
<th>Independent Measure</th>
<th>English Speaking Hispanics (n=150)</th>
<th>Spanish Speaking Hispanics (n=270)</th>
<th>English Speaking Non-Hispanics (n=409)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Burden of kidney disease</td>
<td>Overall health rating score</td>
<td>−0.44 (<.001)</td>
<td>−0.37 (<.001)</td>
<td>−0.42 (<.001)</td>
</tr>
<tr>
<td>Symptoms/problems</td>
<td>Overall health rating score</td>
<td>−0.04 (.6)</td>
<td>−0.18 (.003)</td>
<td>−0.11 (.03)</td>
</tr>
<tr>
<td>Symptoms/problems</td>
<td>Hemoglobin</td>
<td>0.12 (.2)</td>
<td>0.03 (.6)</td>
<td>0.20 (.001)</td>
</tr>
<tr>
<td>Symptoms/problems</td>
<td>Davies comorbidity score</td>
<td>−0.46 (<.001)</td>
<td>−0.50 (<.001)</td>
<td>−0.54 (<.001)</td>
</tr>
<tr>
<td>Symptoms/problems</td>
<td>Patient symptom form</td>
<td>−0.01 (.9)</td>
<td>−0.70 (<.0001)</td>
<td>−0.77 (<.001)</td>
</tr>
<tr>
<td>Symptoms/problems</td>
<td>Hemoglobin</td>
<td>0.13 (.1)</td>
<td>0.10 (.1)</td>
<td>0.18 (<.001)</td>
</tr>
<tr>
<td>Effects of kidney disease</td>
<td>Overall health rating score</td>
<td>−0.36 (<.001)</td>
<td>−0.37 (<.001)</td>
<td>−0.37 (<.001)</td>
</tr>
<tr>
<td>Effects of kidney disease</td>
<td>Davies comorbidity score</td>
<td>0.01 (.9)</td>
<td>−0.13 (.04)</td>
<td>−0.16 (.001)</td>
</tr>
<tr>
<td>Effects of kidney disease</td>
<td>Hemoglobin</td>
<td>0.06 (.5)</td>
<td>0.08 (.2)</td>
<td>0.15 (.002)</td>
</tr>
<tr>
<td>SF-12 physical component summary</td>
<td>Overall health rating score</td>
<td>−0.58 (<.001)</td>
<td>−0.54 (<.001)</td>
<td>−0.65 (<.001)</td>
</tr>
<tr>
<td>SF-12 physical component summary</td>
<td>Davies comorbidity score</td>
<td>−0.32 (<.001)</td>
<td>−0.30 (<.001)</td>
<td>−0.37 (<.001)</td>
</tr>
<tr>
<td>SF-12 physical component summary</td>
<td>KCCQ™ clinical summary</td>
<td>0.48 (<.001)</td>
<td>0.38 (<.001)</td>
<td>0.64 (<.001)</td>
</tr>
<tr>
<td>SF-12 physical component summary</td>
<td>Serum albumin</td>
<td>0.18 (.03)</td>
<td>−0.03 (.9)</td>
<td>0.18 (<.001)</td>
</tr>
<tr>
<td>SF-12 physical component summary</td>
<td>Hemoglobin</td>
<td>0.22 (.007)</td>
<td>0.14 (.02)</td>
<td>0.19 (<.001)</td>
</tr>
<tr>
<td>SF-12 physical component summary</td>
<td>Typical Week Physical Activity Survey</td>
<td>0.30 (<.001)</td>
<td>0.29 (<.001)</td>
<td>0.38 (<.001)</td>
</tr>
<tr>
<td>SF-12 mental component summary</td>
<td>Overall health rating score</td>
<td>−0.32 (<.001)</td>
<td>−0.44 (<.001)</td>
<td>−0.29 (<.001)</td>
</tr>
<tr>
<td>SF-12 mental component summary</td>
<td>Beck depression inventory</td>
<td>−0.56 (<.001)</td>
<td>−0.59 (<.001)</td>
<td>−0.61 (<.001)</td>
</tr>
<tr>
<td>SF-12 mental component summary</td>
<td>Davies comorbidity score</td>
<td>−0.08 (.3)</td>
<td>−0.11 (.07)</td>
<td>0.02 (.70)</td>
</tr>
<tr>
<td>SF-12 mental component summary</td>
<td>KCCQ clinical summary</td>
<td>0.36 (<.001)</td>
<td>0.31 (<.001)</td>
<td>0.33 (<.001)</td>
</tr>
</tbody>
</table>

a Kansas City Cardiomyopathy Questionnaire.
b Typical Week Physical Activity Survey.

with the PCS (r = −0.58 [EH], −0.54 [SH] and −0.65 [W]). Of the kidney disease-specific domains, the strongest correlation was found for the Symptoms/problems subscale (r = −0.46 [EH], −0.50 [SH] and −0.54 [W]). We also found significant negative correlation between the BDI and MCS scores (r = −0.56 [EH], −0.59 [SH], and −0.61 [W]). There was significant negative correlation between the Davies comorbidity score and the PCS scores (r = −0.32 [EH], −0.30 [SH], and −0.37 [W]). We also found significant positive correlation between the KCCQ clinical summary and the PCS scores (r = +0.48 [EH], +0.38 [SH], and +0.64 [W]).
KDQOL-36™ Scores by Language and Ethnic/Racial Group

After adjustment for clinical and demographic characteristics, the scores of three KDQOL-36™ subscales (Burden of Kidney Disease, Effects of Kidney Disease, and Symptoms/problems list) were significantly lower in Spanish-speaking Hispanics than in non-Hispanic Whites ($P<.01$) (Table 4).

DISCUSSION

In these cohorts of US Spanish- and English-speaking Hispanics with mild-to-moderate CKD, we found that the KDQOL-36™ is a reliable and valid tool to assess HRQOL. Consistent with results from studies validating other language versions of the KDQOL™ instrument, we found significant correlation between each KDQOL-36™ subscale and the overall health rating score.23–26 Similar to other studies,23 we found that individuals with depressive symptoms tend to have lower HRQOL as measured by the mental component summary of the KDQOL-36™. Furthermore, the correlation between the Patient Symptom Form score and the Symptoms/Problems subscale of the KDQOL-36™ was strong and in the anticipated direction.

A secondary objective of this study was to evaluate HRQOL in Hispanic and non-Hispanic individuals with mild-to-moderate CKD. Overall, the KDQOL-36™ scores were similar to those reported in other US studies of non-dialysis CKD and kidney transplant recipients,27,28 and higher than in dialysis patients.29 Similar to findings from the Dialysis Outcomes and Practice Patterns Study,29 we observed that Hispanics with CKD had lower HRQOL than non-Hispanics. Hispanics in the United States are known to be at socioeconomic disadvantage,30 and this is evident in our study cohort by the significant disparities in educational attainment. However, differences in HRQOL between ethnic groups were not fully explained by differences in age, education or clinical factors. The lower HRQOL in Hispanics may also be related to differences in disease burden, which were not measured, or to reporting bias, which is supported by a study by Marin et al31 suggesting that Hispanics are more likely to choose extreme categories in a response scale.

Our study had several limitations. First, the majority of Hispanics in our study were recruited from a single clinical center perhaps limiting the generalizability of findings. However, the characteristics of Hispanics in CRIC and HCRIC are reflective of the heterogeneity of the US Hispanic population.1,32,33 Second, the KDQOL-36™ was originally developed for patients with ESRD; however, it has been previously used in non-dialysis CKD individuals.27,28 Third, the KDQOL-36™ was administered once and we could not evaluate test-retest reliability. Nonetheless, we were able to demonstrate good internal consistency reliability within three different ethnic/language subgroups.

In conclusion, based on our study findings, the KDQOL-36™ can be used to assess HRQOL in US Hispanics with CKD. Future research is needed to evaluate HRQOL as a predictor for adverse health outcomes and responsiveness to interventions aimed at improving HRQOL in Hispanics with CKD.

ACKNOWLEDGMENTS

Funding for the CRIC Study was obtained under a cooperative agreement from National Institute of Diabetes and Digestive and Kidney Diseases (U01DK060990, U01DK060984, U01DK061022, U01DK061021, U01DK061028, U01DK060980, U01DK060963, and U01DK060902). In addition, this work

Based on our study findings, the KDQOL-36™ can be used to assess HRQOL in US Hispanics with CKD.
was supported in part by: the University of Pennsylvania CTRC CTSA UL1 RR-024134, Johns Hopkins University UL1 RR-025005, University of Maryland GCRC M01 RR-16500, Clinical and Translational Science Collaborative of Cleveland, UL1TR000439 from the National Center for Advancing Translational Sciences (NCATS) component of the National Institutes of Health and NIH roadmap for Medical Research, University of Michigan GCRC grant number M01 RR-00042 CTSA grant number UL1 RR-024986, University of Illinois at Chicago CTSA UL1RR029879. The Clinical and Translational Research, Education, and Commercialization Project (CTRECP), Kaiser NIH/NCRR U54-UL1-RR-02131.

REFERENCES

AUTHOR CONTRIBUTIONS

Design and concept of study: Ricardo, Hacker, Ackerson, Go, Ojo, Ferrans, Lash

Acquisition of data: Ricardo, DeSalvo, Go, Ojo, Townsend, Ferrans, Lash

Data analysis and interpretation: Ricardo, Hacker, Lora, Ackerson, Go, Kusek, Nesel, Ojo, Xie, Ferrans, Lash

Ethnicity & Disease, Volume 23, Spring 2013
APPENDIX A

Chronic Renal Insufficiency

CoHort (CRIC) Study

University of Pennsylvania Scientific &
Data Coordinating Center
Harold I. Feldman, MD, MSCE (PI)
J. Richard Landis, PhD (Co-PI)
Amanda Hyre Anderson, PhD, MPH
Shawn Ballard, MS
Boyang Chai, MS
Laura M. Dember, MD
Jennifer Dickson
Marie Durborow
Chuck Girard
Melanie Glenn, MPH
Elizabeth S. Helker, RN
Peter A. Kanetsky, PhD, MPH
Scott Kasner, MD, MSCE, FAHA
Stephen E. Kimmel, MD, MSCE
Carissa Mazurzick, MS
Steven R. Messe, MD
Lisa Nessel, MSS, MLSP
Qiangan, MA
Nancy Robinson, PhD
Jason Roy, PhD
Guixiang (Kevin) Tao, PhD, MS
Valerie L. Teal, MS
Krisa Whitehead, MS
Dawe Xie, PhD
Wei (Peter) Yang, PhD
Xiaoming Zhang, MS

University of Pennsylvania Medical Center
Raymond R. Townsend, MD (PI)
Debbie Cohen, MD
Magdalena M. Cuevas, MT
Mark J. Duckworth
Virginia Ford, MSN, CRNP
Yonghong Huan, MD
Radhakrishna R. Kallem, MD, MPH
Juliet Leshner
Stephanie McDowell
Emile R. Mohler, III, MD
Wanda M. Seamon
Angie Sheridan, MPH
Jillian Strelsin
Karen Teff, PhD

Johns Hopkins University
Lawrence J. Appel, MD, MPH (PI)
Cheryl Anderson, PhD, MPH
Teresa Chan, MD, MHS

University Hospitals of Cleveland Case
Medical Center
Mahboob Rahman, MD (PI)
Mirela A. Dobre, MD, MPH (Co-PI)
Kathryn Clark, RN
Valori Corrigan RN
Genya Kisin, CTC
Radhika Kanthery, RN, MSHS
Louise Strauss, RN
Jackson T. Wright, Jr., MD, PhD

MetroHealth Medical Center
Jeffrey Schilling, MD (Co-PI)
Ed Howard, MD (Co-PI)
Lori Guillen, RN
Alicia O’Brien, RN, BSN
Noreen O’Malley, RN, BSN
Suma Prakash, MD
John R. Sedor, MD
Mary Ann Sheila, RN, BSN
Anne Slaven, MSHA
Jacqueline Therer, MBA
J. Daryl Thornton, MD, MPH

Cleveland Clinic Foundation
Sankar D. Navaneethan, MD, MPH (PI)
Martin J. Schreiber, MD (Co-PI)
Jon Taliercio, DO (Co-PI)
Martha Coleman, RN, BSN
Kim Hopkins, RN
Lara Danziger-Isakov, MD MPH
Teresa Markle
Melanie Ramos, RN
Annette Russo
Stephanie Slattery, RN
Kay Stelmach, RN
Velma Stephens, LPN

University of Michigan at Ann Arbor
Akinololu Ojo, MD, PhD (PI)
Baskaran Sundaram, MD
Jeff Briesmiester
Denise Cornish-Zirker, RN, BSN
Nancy Hill
Kenneth Jamerson, MD
Rajiv Saran, MD

University of Maryland
Jeffrey Fink, MD, MS (Co-PI)
Clarissa Diamantidis, MD
Wanda Fink, RN, MS
Lisa Lucas
Tiffany Page
Afshin Parsa, MD, MPH
Beth Scism
Stephen Seliger, MD, MS
Matthew Weir, MD

University of Maryland
Jeffrey Fink, MD, MS (Co-PI)
Clarissa Diamantidis, MD
Wanda Fink, RN, MS
Lisa Lucas
Tiffany Page
Afshin Parsa, MD, MPH
Beth Scism
Stephen Seliger, MD, MS
Matthew Weir, MD

University of Wisconsin
Dale N. Durksen, MD, PhD (PI)
Nancy H. Eijkman, MD (Co-PI)
Rajiv Saran, MD

Wayne State University
John M. Flack, MD, MPH (Co-PI)
James Sondheimer, MD
Jennifer Mahn
Mary Maysura
Stephen Migdal, MD
M. Jena Mohanty, MD
Carol Muzyk, CCRP
Yanni Zhuang

University of Illinois at Chicago
James G. Lask, MD (PI)
Carlyn Breggin, MD
Eunice Carmona
Janet Cohen, MSN
Michael Fischer, MD, MPH
Anne Frydich, MS, RD
Amada Lopez
Claudia Lora, MD
Monica Martinez
Alejandro Mercado
Brenda Menno
Patricia Meslar, MSN
Ana Ricardo, MD, MPH

Tulane University Health Science Center
Jiang He, MD, PhD (PI)
Brent Alper, MD
Vechee Batuman, MD
Lydia A. Bazzano, MD, PhD
Bernadette Borja
Jing Chen, MD, MSc
Catherine Cooke
Patrice Delafontaine, MD
Karen B. DeSalvo, MD, MPH, MSc
Jacquelyn Dolan
Lee Hamm, MD
Eva Lustigova, MPH
Erin Mahone, RN, BSN, MPH
Lanie Sansing
Claire Starcke

Kaiser Permanente of Northern California
Alan S. Go, MD (PI)
Arthur Choi
Pete Dorin, MPA
Nancy G. Jenks, MPH
Joan C. Lo, MD
Liliana Metzger
Elisa Frances Nasol
Juan D. Ordonez, MD, MPH
Rachel Perloff
Nina Sasso
Daphne Thompson
Jingrong Yang, MA

Manuscript draft: Ricardo, Hacker, Lora, Ackerson, DeSalvo, Go, Kusek, Nessel, Ojo, Townsend, Xie, Ferrans, Lash

Statistical expertise: Ricardo, Ackerson, Go, Xie, Ferrans, Lash

Acquisition of funding: Ackerson, Kusek, Ojo, Townsend

Administrative: Lora, Kusek, Nessel, Townsend

Supervision: Hacker, Townsend

KDOQI-36 VALIDATION IN HISPANICS WITH CKD - Ricardo et al

Ethnicity & Disease, Volume 23, Spring 2013